Wednesday, July 19, 2017

Physics Syllabus

SEMESTER I

L
T
P
C
3
0
2
4
 PHC 1181                                                    PHYSICS I         

OBJECTIVES
To make students conversant with the
·         basic concepts of crystal physics and its structures
·         production and applications of ultrasonic waves
·         study of thermal conductivities of good and bad conductors
·         phenomenon of wave optics and its applications
·         principle of fibre optic communication and its applications to sensors
·         wave mechanics principle and its applications in electron microscopy
·         green energy physics and its environmental impacts to society

MODULE 1     CRYSTAL PHYSICS                                                            8
Crystalline and amorphous solids – Unit Cell – Seven Crystal Systems – Bravais Lattice – Miller Indices – Interplanar Spacing – Characteristics of Unit Cell  - Calculation of Number of atoms per unit cell, Atomic Radius, Coordination Number and Packing Factor  for SC, BCC, FCC and HCP and Diamond structures –Defects in crystals-Point defects –Edge and screw dislocations and their significance - Surface Defects.

MODULE 2   ULTRASONICS AND THERMAL PHYSICS                          8
Introduction to Ultrasonics - Properties  - Production methods - Magnetostriction Oscillator method- Piezoelectric Oscillator method – Detection of Ultrasonics – Thermal method – Piezoelectric method – Kundt’s tube method – Applications of Ultrasonics – Acoustic Grating – SONAR – Depth of sea – Velocity of blood flow, Ultrasonic Flaw detector (qualitative).
Transmission of heat – Conduction, Convection and Radiation – Thermal Conductivity of good Conductor – Forbe’s method- Thermal Conductivity of bad Conductor – Lee’s Disc method.

MODULE 3   APPLIED OPTICS                                                                 8
Interference – Air Wedge – Michelson’s Interferometer – Determination of wavelength of light and thickness of thin transparent sheet.
Introduction to Laser – Characteristics of Laser – Spontaneous and Stimulated Emissions – Einstein’s Coefficients - Population inversion – Pumping Mechanism – Laser Action – Types of Laser: He-Ne laser, CO2 laser and Nd:YAG laser - Applications : Laser Materials Processing .

MODULE 4  FIBRE OPTICS                                                                       7
Optical fibre – Principle and propagation of light in optical fibre – Numerical aperture and acceptance angle – Types of optical fibres – Attenuation – Absorption, Scattering losses, Bending losses and Dispersion in Optical fibres – Fiber Connectors and Couplers - Applications – Fibre optic communication system (block diagram only)- Fibre optic sensors - displacement and pressure sensors (qualitative) - Medical endoscope.

MODULE 5 QUANTUM MECHANICS                                                      7
Black body radiation – Planck’s theory of radiation – Deduction of Wien’s displacement law and Rayleigh – Jean’s law from Planck’s theory –Dual nature of matter – de Broglie’s wavelength- Physical significance of wave function – Schrodinger wave equation – Time independent and time dependent wave equation – Particle in one dimensional box – Harmonic oscillator(qualitative).

MODULE 6  RENEWABLE ENERGY SOURCES                                     7
Present Energy sources and sustainability - Solar energy - Solar photovoltaics - Solar cells – Bioenergy - Biomass – production of liquid fuels from biomass – Wind energy – Wind turbines – energy and power from wind turbines -  Geothermal energy - Ocean energy: Wave energy – Wave energy conversion devices – Tidal energy – Tidal power basics – power generation –Tidal energy potential  – Environmental benefits and impacts of renewable energy sources
                                                                                                   L:45 periods
PRACTICALS

1. Determination of Velocity of Ultrasonic waves in a given liquid using Ultrasonic Interferometer.
2.    Determination of wavelength of ultrasonic waves using Kundt’s tube method.
3.    Determination of thickness of a thin wire using Air Wedge method.
4.    Determination of wavelength of light using spectrometer diffraction grating.
5.    Determination of angle of divergence of a laser beam using He-Ne laser.
6.    Determination of particle size of lycopodium powder using semiconductor laser.
7.    Determination of wavelength of laser light using semiconductor laser diffraction.
8.    Determination of Acceptance angle and Numerical Aperture using fiber optic cable.
9.    Determination of thermal conductivity of a good conductor by Forbe’s method.
10. Determination of thermal conductivity of a bad conductor by Lee’s disc method.
11. Determination of solar cell characteristics.
P: 30 periods
Total: 75 periods

REFERENCES:

1.    Gaur R.K. and Gupta S.L., “Engineering Physics’’, 8th edition, Dhanpat Rai Publications (P) Ltd., New Delhi, 2013.
2.    Palanisamy P.K., Physics for Engineers, Vol1 & Vol2, 2nd Edition, Scitech Publications, 2003.
3.    Serway R.A. and Jewett, J.W. “Physics for Scientists and Engineers with Modern Physics”. Brooks/cole Publishing Co., 2010.
4.    Tipler P.A. and Mosca, G.P., “Physics for Scientists and Engineers with Modern Physics”, W.H. Freeman, 2007.
5.    Markert J.T., Ohanian. H. and Ohanian, M. “Physics for Engineers and Scientists”. W.W. Norton & Co. 2007.
6.    Godfrey Boyle, “Renewable Energy: Power for sustainable future”, 2nd edition, Oxford University Press, UK, 2009.

OUTCOMES:
At the end of the course, students will be able to
·         understand the different types of crystal structures 
·         apply the concept of ultrasonic principle in engineering and medical field
·         calculate thermal conductivities of good and bad conductors
·         differentiate the various laser systems and its applications in engineering and medical field
·         apply the principle of fibre optics for communication and sensor applications
·         formulate wave mechanics principle for applications in electron microscopy
·         Correlate the different renewable energy sources for societal needs.
·         To complement the knowledge acquired in the theory class.

·         To correlate the experimental results for application. 

No comments: